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Analysis of a diffuse-photon-density wave
in multiple-scattering media

in the presence of a small spherical object
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We present a general analysis of the sensitivity of a diffuse photon density wave in a homogeneous multiple-
scattering medium to the presence of a small spherical object. From our calculations in both infinite and
semi-infinite geometry we derive the charge and dipole coefficients that typify the object’s most significant
response.  1996 Optical Society of America
1. INTRODUCTION
In the field of medical imaging the migration of diffuse
photons in multiple-scattering media has recently re-
ceived much attention.1 – 4 This is due to the promising
new discovery that diffuse photon flux at a tissue sur-
face may provide sufficient information about the loca-
tion and size of foreign objects and growths in otherwise
normal human tissue. The idea of using diffuse photon
density or flux as the basis of new noninvasive imaging
tools has been proposed and studied by many groups.1 – 4

Following the work of Arridge and den Outer et al., Feng
et al. reported a perturbation calculation of the change
in diffuse photon density in the presence of a small
spherical defect.5 – 9 They showed that the most impor-
tant change, resulting from the embedment of a small
spherical object in an otherwise homogeneous multiple-
scattering medium, is characterized by charge and dipole
terms, similar to the findings of den Outer and co-workers.
These findings are most relevant to the potential appli-
cation of diffuse-photon-density wave spectroscopy to, for
example, early breast cancer detection.1 In this case one
is concerned mainly with tissue growths that are small
compared with the overall size of a human breast and the
absorption depth of the near-infrared light.1 These au-
thors showed that one may need only one or at most four
parameters to characterize the net change of a diffuse-
photon-density wave that is due to a small abnormal ob-
ject in an otherwise homogeneous medium. However, in
the paper by Feng et al., several crucial details such as
the derivation of various coefficients [Eqs. (20) and (21) of
Ref. 6] and the circumstances under which they may ap-
ply were neglected. A more systematic calculation was
reported recently by Boas et al.10 They also found nu-
merically that as the size of an embedded object in a
multiple-scattering medium decreases, the change of the
0740-3232/96/030494-06$06.00
diffuse-photon-density wave (the scattered wave) becomes
more isotropic, indicative of a more predominant contri-
bution from a charge-like term. These authors stopped
short of explicitly deriving the charge and dipole coeffi-
cients from their general results. In this paper we strive
to fill in the gaps by making available the exact results
of the scattered diffuse-photon-density wave in a single-
source configuration. From the exact results we will con-
sider a number of special situations encountered in previ-
ous studies, including the ones dealt with in Refs. 6 and
10, and we will present the appropriate charge and dipole
coefficients that describe the major part of the scattered
diffuse photon density wave. Our results may serve as
a convenient starting point in the application of diffuse-
photon-density wave spectroscopy to early tumor detec-
tion. Also significant is the fact that our results can eas-
ily be applied to cases in which more than one light source
are involved.

2. DIFFUSIVE PHOTON DENSITY AND
FLUX IN MULTIPLE-SCATTERING
MEDIA IN THE PRESENCE OF A
SMALL SPHERICAL DEFECT OBJECT:
THE INFINITE GEOMETRY CASE
Consider a monochromatic point light source placed at po-
sition r0 in an infinite homogeneous multiple-scattering
medium as shown in Fig. 1. It has a strength S0 ex-
pressed in units of number of photons per second. The
time-dependent diffuse-photon-number density Fsr, td at
position r in the medium satisfies the diffusion equation11

1
c

≠Fsr, td
≠t

2 D=2Fsr, td 1 maFsr, td ­ S0stddsr 2 r0d .

(1)
 1996 Optical Society of America
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Fig. 1. Small spherical defect object with radius of curvature
a embedded in an infinite multiple-scattering medium. The
origin of the coordinate system overlaps the center of the object.
A point light source is placed at r0.

Here D is the diffusion constant of the medium, D ­
1y3fma 1 s1 2 gdmsg, ma is the absorption coefficient (in
units of inverse length), ms ­ 1y,s is the scattering coeffi-
cient with ,s serving as the scattering mean free path, and
g ­ kcos uscatteringl. The quantity mtr ; s1 2 gdms ­ 1y,tr

is also known as the transport scattering coefficient with
,tr serving as the transport mean free path.12 c ­ c0yn is
the speed of light inside the multiple-scattering medium
with a refractive index n.

We consider the general situation in which the ampli-
tude of the point source may be modulated at a frequency
V, i.e., S0 exps2iVtd.10 By setting V to zero we can re-
duce the result to cases in which continuous-wave sources
are used. In the steady state the diffusion equation as-
sumes the following form:

2=2Fsr, Vd 1

√
ma

D
2

iV

Dc

!
Fsr, Vd ­

S0

D
dsr 2 r0d . (2)

Equation (2) is solved by the well-known function

F0sr, Vd ­
S0

4pD
exps2kjr 2 r0jd

jr 2 r0j
, (3)

where k2 ; fsmayDd 2 siVyDcdg. The diffuse photon flux
is given by

J0 ­ 2D=F0sr, Vd . (4)

Now we place a small spherical object at the ori-
gin r ­ 0. Its radius of curvature a is much smaller
than r0 ; jr0j. Inside the sphere the scattering pa-
rameters are denoted as D 0, m

0
a0 , m

0
s0 , g0, and k0 ;p

m0
ayD 0 2 iVyD 0c.5,6 We are interested in the pertur-

bation correction to F0sr, Vd at an observation point r.
As described in Appendix A the diffuse photon density
outside the sphere takes the form

Foutsr, Vd ­ F0sr, Vd 1
P̀

m­0
BmkmskrdPmscos ud , (5)

where u is the angle between r0 and r. The expansion
coefficients Bm are determined from the boundary condi-
tions that require the diffuse photon density and flux to
be continuous across the surface of the sphere:

Bm ­
s2dS0ks2m 1 1dkmskr0d

4pD

3

(
kDimsk0adfimskadgs1d 2 k0D 0imskadfimsk0adgs1d

kDimsk0adfkmskadgs1d 2 k0D 0kmskadfimsk0adgs1d

)
,

(6)
where imsxd and kmsxd are the spherical modified Bessel
functions and fimsxdgs1d and fkmsxdgs1d are their first deriva-
tives, respectively.13 It is easily verified that when the
sphere is absent so that D ­ D 0 and k ­ k0 we have Bm ­ 0
for all m. From Eq. (6) we can derive the so-called charge
and dipole coefficients defined by5,6,8

jqj ­ jB0ykj (7)

jpj ­ jB1yk2j . (8)

They correspond to the first two terms of the summation
in Eq. (5) with m ­ 0 and m ­ 1, respectively. When
a ,, jr0j and a ,, jrj these two terms are the most
important in Eq. (5) and in practice, as we will elaborate
shortly.

The first interesting situation occurs under the follow-
ing conditions: The point source is a continuous wave
with V ­ 0, and the multiple-scattering medium is very
weakly absorbent or nonabsorbent sjkaj ,, 1d, whereas
the small additional object is extremely absorbent
sjk0aj .. 1d. From Eq. (6) we find B0 ø 2F0s0dka and
B1 ø 2j=F0s0dja3k2. The first two terms of the addi-
tional diffuse photon density are given by

F1srd ; Foutsrd 2 F0srd

­

"
q0

r
1

p0 ? r
r3

s1 1 krd

#
exps2krd . (9)

These terms correspond to a charge term and a dipole
term that become exact if jkrj goes to zero (the non-
absorbent limit). Here we omit the frequency variable
(as V ­ 0) to tidy up Eq. (9). The charge coefficient is
given by

q0 ­ 2F0s0da (10)

and the dipole moment is given by

p0 ­ 2=F0s0da3, (11)

which aims from the point source to the center of the small
spherical object. This situation corresponds to that of the
electrostatic response of a grounded, perfect conducting
sphere in an external potential.14 A good example that
illustrates the predominance of the charge and dipole
terms was implicitly given by Boas and co-workers.10 As
shown in Fig. 2(b) of Ref. 10, the amplitude contour of the
scattered diffuse-photon-density wave from a spherical
object with a radius as large as a ­ 0.5 cm is already
almost isotropic at 1 to 1.5 cm from the center of the
object, as expected from Eq. (9) with p0 ­ 0. The slight
shift of the contour centers from the object toward the
source is clearly the result of the contribution from the
dipole moment p0 described by Eq. (11).

The second interesting situation occurs when both the
multiple-scattering medium and the small spherical ob-
ject are weakly absorbent but jkaj ,, jk0aj ,, 1. This is
a relevant situation if one is interested in detecting small
abnormal growths a few millimeters in diameter in the
human breast or the human brain at optical wavelengths
near 800 nm.1 In this case the most important correc-
tion to the unperturbed diffusive photon density F0srd is
again characterized by a charge term and a dipole term:
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F1srd ø

"
q
r

1
p ? r

r3
s1 1 krd

#
exps2krd . (12)

The charge and the dipole coefficients are reduced to

q ­ 2F0s0da

√
ma

0a2

3D

!
­ q0

ma
0a2

3D
(13)

p ­ 2=F0s0da3 D 0 2 D
D 0 1 2D

­ p0
D 0 2 D

D 0 1 2D
. (14)

This result agrees with the diagrammatic calculation
by Nieuwenhuizen and van Rossum15 and originally at-
tempted by Berkovits and Feng.16 It is noteworthy that
if the small object is transparent so that k0 ­ 0 and D 0 ! `

then q ­ 0 and p ­ p0. This means that there will be no
charge term and that the dipole term is restored to that
of a perfect absorber. This situation corresponds to that
of the electrostatic response of an ungrounded, perfectly
conducting sphere in an external potential.

The third interesting situation occurs when both ka and
k0a are finite but jsk0 2 kdaj ,, 1 and jsD 0 2 DdyDj ,, 1.
The light source can be either a continuous wave or an
amplitude-modulated wave. In this case we can expand
the functions in Eq. (6) around k and D and keep only
the terms varying linearly with dk ­ k0 2 k and dD ­
D 0 2 D. We find that

B0 ­ 2F0s0dhsdkykdfsinhskadcoshskad 2 kag

1 sdDyDdfsinhskadykag

3 fka coshskad 2 sinhskadgj (15)

and

B1 ­ 2
3j=F0s0dj

k4a3
hsdkykdfka sinhskadcoshskad

1 k2a2 2 2 sinh2skadgk2a2

1 sdDyDdfka coshskad 2 sinhskadgfk2a2 sinhskad

2 2ka coshskad 1 2 sinhskadgj . (16)

The leading-order changes in the diffuse photon density
are given by Eq. (12), with the charge and the dipole
coefficients given by

q ­ 2
F0s0d

k
hsdkykdfsinhskadcoshskad 2 kag

1 sdDyDdfsinhskadykag

3 fka coshskad 2 sinhskadgj , (17)

p ­ 2
3=F0s0d

k6a3
hsdkykdfka sinhskadcoshskad

1 k2a2 2 2 sinh2skadgk2a2

1 sdDyDdfka coshskad 2 sinhskadgfk2a2 sinhskad

2 2ka coshskad 1 2 sinhskadgj . (18)

We note that in the weak-absorption limit when the mag-
nitudes of both ka and k0a are small compared with unity,
Eqs. (17) and (18) are simplified to

q ­ q0
a2sma

0 2 mad
3D

(19)

p ø
p0

3

"
sdDyDd 1

2
5

sdkykdk2a2

#
, (20)

where q0 and p0 are given by Eqs. (10) and (11). Such
a perturbation limit is experimentally relevant in the
case of detecting tumor growth in the human breast and
the human brain in the optical wavelength range near
800 nm. Relations (19) and (20) reduce to Eqs. (13) and
(14) when ka approaches zero.

For more general situations one should use both the
full solution prescribed by Eq. (5), which includes multi-
polar terms of all orders, and the exact coefficients given
by Eq. (6). Once the distribution of the diffuse photon
density is determined, the photon flux can be obtained
from Eq. (4).

3. DIFFUSE PHOTON DENSITY AND
FLUX IN A MULTIPLE-SCATTERING
MEDIUM IN THE PRESENCE OF A
SMALL SPHERICAL DEFECT OBJECT:
THE SEMI-INFINITE GEOMETRY CASE

It is easy to extend the results of Section 2 to situations
involving semi-infinite multiple-scattering media. In
particular, we consider an experimentally relevant ge-
ometry as shown in Fig. 2. The multiple-scattering re-
gion (the sample region) and the scattering-free region
are separated by a flat interface located at z ­ 0. The
sample region occupies the half-space with z . 0. We
consider a light source S0 generated by placement of a
point light emitter (e.g., the tip of a light-carrying optical
fiber) at r0 ­ sd, 0, 0d.1 Aronson has shown that when
the sample region and the free space are index matched,
the point source is effectively located slightly inside the
sample region at rs ­ sd, 0, z0d, with z0 ø 0.7,tr.17 We
are interested in evaluating the outgoing diffuse pho-
ton flux at rd ­ s0, 0, 0d into the scattering-free region.

Fig. 2. Small spherical defect object with radius of curvature
a embedded in a semi-infinite multiple-scattering medium (the
sample region) that occupies the half-space with z . 0. The
scattering-free region occupies the half space with z , 0. A
point light source is placed inside the sample region at rs ­
sd, 0, z0d. Special attention should be paid to the definitions of
us1d

s and us2d
s that are used in Appendix B.
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Fig. 3. Same as Fig. 2 except for the definitions of u
s1d
image

and u
s2d
image that are used in Appendix B.

This is typically known as reflection geometry as used,
for example, by Knüttel et al.9

The boundary condition at the interface can be approxi-
mated if we require that Fsrd ­ 0 at z ­ 0 as usual. In
the absence of the additional spherical object the solution
to Eq. (2), F

ssemid
0 srd, is obtained simply by the method of

images.14 It consists of a term F0,orig.srd induced by the
original source at rs ­ sd, 0, z0d and a term F0,imagesrd
induced by the image of the original source at rs,image ­
sd, 0, 2z0d:

F
ssemid
0 srd ­ F0,orig srd 1 F0,imagesrd

­
S0

4pD
exps2kjr 2 dx̂ 2 z0ẑjd

jr 2 dx̂ 2 z0ẑj

1
s2dS0

4pD
exps2kjr 2 dx̂ 1 z0ẑjd

jr 2 dx̂ 1 z0 ẑj

ø
2zz0S0s1 1 kjr 2 dx̂jdexps2kjr 2 dx̂jd

4pDjr 2 dx̂j3
. (21)

When a small spherical object is added at r0 ­ sx0, y 0, z0 d
in the sample region, as shown in Fig. 2, the leading-order
change in the diffuse photon density is described by the
charge and dipole responses of the object at r0 ­ sx0, y 0, z0 d
and the responses of the images of these charge and dipole
responses at r0

image ­ sx0, y 0, 2z0 d:

F
ssemid
1 srd

ø qssemid

"
exps2kjr 2 r0jd

jr 2 r0j
2

exps2kjr 2 r0
imagejd

jr 2 r0
imagej

#

1 pssemid
x sx 2 x0 d

"
s1 1 kjr 2 r0jdexps2kjr 2 r0jd

jr 2 r0j3

2
s1 1 kjr 2 r0

imagejdexps2kjr 2 r0
imagejd

jr 2 r0
imagej

3

#

1 pssemid
z

"
sz 2 z0 ds1 1 kjr 2 r0jdexps2kjr 2 r0jd

jr 2 r0j3

1
sz 1 z0 ds1 1 kjr 2 r0

imagejdexps2kjr 2 r0
imagejd

jr 2 r0
imagej

3

#
.

(22)

The contributions from the higher-order multipole mo-
ments can be similarly derived, as shown in Appendix B.
They are negligible in the present case when a ,, jr0j and
a ,, jrj. The numerical results of Boas and co-workers
demonstrated that the contributions may be negligible
even when a # s1y2 , 1y3djrj and a # s1y2 , 1y3djr0j.10

The charge and the dipole moments for the semi-infinite
geometry are the respective sums of the charge and the
dipole moments induced by the original point source at
rs ­ sd, 0, z0d and its image at rs,image ­ sd, 0, 2z0d. For
example, if the small spherical defect object is extremely
absorbent while the multiple-scattering medium is very
weakly absorbent we have the familiar result

qssemid
0 ­ 2F

ssemid
0 sr0 da (23)

pssemid
0 ­ 2=F

ssemid
0 sr0 da3, (24)

where F
ssemid
0 srd is given by Eq. (21).

If both the spherical object and the multiple-scattering
medium are weakly absorbent, the charge coefficient is
reduced to

qssemid ø 2
F

ssemid
0 sr0 da3sma

0 2 mad
3D

(25)

and the dipole coefficient to

pssemid ø 2
=F

ssemid
0 sr0 da3

3

24√
D 0 2 D

D

!
1

2
5

√
k0 2 k

k

!
k2a2

35 .

(26)

The photon flux at the observation point rd ­ s0, 0, 0d
is obtained from Eq. (4). It is simply the near-field in-
tensity of the output light, which can be measured either
directly with close-contact fiber optics or indirectly with
conventional imaging optics. In the absence of the small
spherical object we have

J0 ­ 2D=F
ssemid
0 srdjr­0 ø 2

S0z0s1 1 kddexps2kdd
2pd3

ẑ ,

(27)

and the flux flows from the sample region to the
scattering-free region along 2ẑ. Since the diffuse pho-
ton density vanishes at the interface the diffuse photon
flux should have only a z component. In the presence
of the small spherical object an additional diffuse photon
flux arises from F

ssemid
1 srd. It has a component from the

charge term,

Jq ­ 2
2Dqssemidz0s1 1 kr0 dexps2kr0 d

r03 ẑ , (28)

and a component from the dipole term,

Jp ­
2Dz0spssemid ? r0 ds3 1 3kr0 1 k2r02dexps2kr0 d

r05 ẑ

2
2Dpssemid

z s1 1 kr0 dexps2kr0d
r03 ẑ . (29)

The ratio of the magnitudes of these two components is
given roughly by JqyJp ø qssemidr0ypssemid. In the limit
when the small object is strongly absorbent we have

Jq

Jp
ø

r02

a2
.. 1 , (30)
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and therefore one has to be concerned only with Jq. If
the small object is not strongly absorbent, the appropriate
expression for Jq should be

Jq ø
2F

ssemid
0 sr0 da3sma

0 2 madz0s1 1 kr0 dexps2kr0d
3r03

ẑ . (31)

It is linearly dependent on the absorption coefficient of
the small object.

4. CONCLUSION
We have calculated analytically the changes in diffuse
photon density and flux that are due to the inclusion of a
small spherical defect object in an otherwise homogeneous
multiple-scattering medium. We reiterate that the most
important contribution to the scattered diffuse-photon-
density wave is from a charge term and a dipole term.
The exact calculations and the charge and dipole coeffi-
cients are provided for the single pointlike source configu-
ration in both infinite and semi-infinite geometry. The
results can be applied easily to cases in which multiple
point sources or extended sources are used. In fact, as
has been suggested by Schmitt, Knüttel, Knutson, Chance
and others,9 by using two pointlike, amplitude-modulated
sources with opposite phases it is possible to cancel the
large contribution from J0 ­ 2D=F

ssemid
0 while maintain-

ing the essential contribution from Jq.5,9 This signifi-
cantly enhances the sensitivity and the spatial resolution
of diffuse photon flux as a probe to small objects in
multiple-scattering media. Our results should be use-
ful to many of the ongoing efforts toward the use of dif-
fuse photon densities to obtain image information about
objects embedded in human tissues or other realistic
multiple-scattering systems.

APPENDIX A: DERIVATION OF THE
EXPANSION COEFFICIENTS Bm IN
EQ. (5) FOR INFINITE GEOMETRY
We select the origin to be at the center of the small spher-
ical object. Inside the sphere we express the solution to
Eq. (2) as an infinite series,

Finsrd ­
P̀

m­0
Amimsk0rdPmscos ud . (A1)

Outside the sphere

Foutsrd ­ F0srd 1
P̀

m­0
BmkmskrdPmscos ud . (A2)

We now expand F0srd in Eq. (3) by using the well-known
identity18

F0srd ­
S0k

4pD

X̀
m­0

s2m 1 1dimskrdkmskr0dPmscos ud (A3)

and rewrite the solution outside the sphere as

Foutsrd ­
X̀

m­0

"
Bmkmskrd 1

s2m 1 1dkS0kmskr0d
4pD

imskrd

#
3 Pmscos ud . (A4)
We now require that the total diffusive photon density and
the normal component of the photon flux be continuous
across the surface of the sphere (the boundary conditions):

Finsrdjr­a ­ Foutsrdjr­a , (A5)

D 0 ≠Finsrd
≠r

É
r­a

­ D
≠Foutsrd

≠r

É
r­a

. (A6)

Inserting Eqs. (A1) and (A4) into Eqs. (A5) and (A6), re-
spectively, we obtain

Am ­
s2dS0ks2m 1 1dkmskr0d

4pD

3

(
kDkmskadfimskadgs1d 2 kDimskadfkmskadgs1d

kDimsk0adfkmskadgs1d 2 k0D 0kmskadfimsk0adgs1d

)
, (A7)

Bm ­
s2dS0ks2m 1 1dkmskr0d

4pD

3

(
kDimsk0adfimskadgs1d 2 k0D 0imskadfimsk0adgs1d

kDimsk0adfkmskadgs1d 2 k0D 0kmskadfimsk0adgs1d

)
. (A8)

APPENDIX B: DERIVATION OF THE
EXPANSION COEFFICIENTS OF F

ssssemisemisemiddd
111 sssrddd

IN EQ. (22) TO ALL ORDERS IN
SEMI-INFINITE GEOMETRY
In semi-infinite geometry, as shown in Figs. 2 and 3, a
boundary condition exists in which the total diffuse pho-
ton density vanishes at the interface z ­ 0. Thus the
change in the diffuse photon density can be obtained by
the method of images. It is convenient to consider sepa-
rately the effects of the original source at rs ­ sd, 0, z0d
and its image at rs,image ­ sd, 0, 2z0d. F

ssemid
1 srd is then

partitioned into a term F
ssemid
1,s srd corresponding to the

original source and a term F
ssemid
1,imagesrd corresponding to the

image of the original source.
We first examine F

ssemid
1,s srd. Without the interface

F
ssemid
1,s srd is simply given by the expression similar to

Eq. (5):

F
sinfinited
1 srd ­

P̀
m­0

B ssd
m kmskjr 2 r0jdPmfcos us1d

s g (B1)

and the expansion coefficients

B ssd
m ­

s2dS0ks2m 1 1dkmskjrs 2 r0jd
4pD

3

(
kDimsk0adfimskadgs1d 2 k0D 0imskadfimsk0adgs1d

kDimsk0adfkmskadgs1d 2 k0D 0kmskadfimsk0adgs1d

)
. (B2)

With the interface an additional term arises that must
satisfy the homogeneous diffusion equation in the sample
region. Following the principle of the image method, the
additional term in effect originates from the image of the
small spherical object with the interface as the mirror
plane. As a result it is easily verified that

F
ssemid
1,s srd ­

P̀
m­0

B ssd
m hkmskjr 2 r0jdPmfcos us1d

s g

2 kmskjr 2 r0
imagejdPmfcos us2d

s gj . (B3)

The definition of the angles as shown in Fig. 2, and B ssd
m

is given by Eq. (B2). The response of the small spherical
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object to the image of the original source F
ssemid
1,imagesrd can

now easily be recorded with the relevant angles defined
in Fig. 3:

F
ssemid
1,imagesrd ­

P̀
m­0

B simaged
m hkmskjr 2 r0jdPmfcos u

s1d
imageg

2 kmskjr 2 r0
imagejdPmfcos u

s2d
imagegj . (B4)

Here

B simaged
m ­

s1dS0ks2m 1 1dkmskjrs,image 2 r0jd
4pD

3

(
kDimsk0adfimskadgs1d 2 k0D 0imskadfimsk0adgs1d

kDimsk0adfkmskadgs1d 2 k0D 0kmskadfimsk0adgs1d

)
. (B5)

Finally, the total change in diffuse photon density in semi-
infinite geometry is expressed as

F
ssemid
1 srd ­ F

ssemid
1,s srd 1 F

ssemid
1,imagesrd

­
P̀

m­0
B ssd

m hkmskjr 2 r0jdPmfcos us1d
s g

2 kmskjr 2 r0
imagejdPmfcos us2d

s gj

1
P̀

m­0
B simaged

m hkmskjr 2 r0jdPmfcos u
s1d
image

i
2 kmskjr 2 r0

imagejdPmfcos u
s2d
imagegj . (B6)

The first two terms from the two preceding summations
are the most important in the limit that a ,, jr0j and
a ,, jrj. They can be rewritten in terms of charge and
dipole responses as described in Eq. (22).

ACKNOWLEDGMENTS
This work was supported in part by the U.S. Office
of Naval Research under grant N00014-92-J-4004, by
the U.S. Department of Energy under grant DE-FG03-
88ER45, and by the U.S. Army Research Office under
grant DAAH04-94-G-035.

Correspondence should be conducted with X. D. Zhu at
the address on the title page; telephone 916-752-4689.

REFERENCES
1. A. Yodh and B. Chance, “Spectroscopy and imaging with

diffusing light,” Physics Today 48, 34–40 (1995).
2. B. Chance and R. R. Alfano, eds., Photon Migration and

Imaging in Random Media and Tissues, Proc. SPIE 1888
(1993).

3. R. R. Alfano, ed., Advances in Optical Imaging and Photon
Migration, Vol. 21 of 1994 OSA Technical Digest Series (Opt.
Soc. of Am., Washington, D.C., 1994).

4. B. Chance and R. R. Alfano, eds., Optical Tomography,
Photon Migration, and Spectroscopy of Tissue and Model
Media: Theory, Human Studies, and Instrumentation,
Proc. SPIE 2389 (1995).

5. S. Feng, F. Zeng, and B. Chance, “Monte Carlo simulations
of photon migration path distribution in multiple scattering
media,” in Photon Migration and Imaging in Random Media
and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE
1888, 78–89 (1993).

6. Shechao Feng, Fan-An Zeng, and B. Chance, “Photon mi-
gration in the presence of a single defect—a perturbation
analysis,” Appl. Opt. 34, 3826–3837 (1995).

7. S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative re-
construction of new infra-red absorption images,” in Inverse
Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc.
SPIE 1767, 372–383 (1992).

8. P. N. den Outer, Th. M. Nieuwenhuizen, and A. Lagendijk,
“Location of objects in multiple-scattering media,” J. Opt.
Soc. Am. A 10, 1209–1218 (1993).
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